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Abstract— Molecular model approach has been used to predict the dispersion characteristics of flexible
polymer chains in confined geometries. The analysis ranges from the early stage dispersion to the steady
Taylor dispersion of the simple linear dumbbell model polymer chains. For the early stage dispersion, the ray
method was applied; an Aris type moments rmothod was useful for the Taylor dispersion. Two parallel plates
were chosen as a confining geometry and the specific initial condition of a point source in the midway of the
gap was chosen for simplicity. It was found that the qualitative difference in dispersion properties of defor-
mable polymer chains starts from the early stage compared with those of single Brownian particles. And it
turns out that one parameter, which is similar to the relative spacing of the dumbbell to the gap of confining
geometries, is useful to see the dispersion characteristics of the dumbbells.

INTRODUCTION

The dispersion of spherical particles in a flowing
solution was first rigorously considered by Taylor [1]
over thirty years ago. It was pointed out in that work that
the dispersion is the result of the coupling of Brownian
motion to the convection arising from the flow. One
remarkable result of Taylor's analysis was a demonstra-
tion of the fact that, after a sufficiently long period of
time, the dispersion of the solute could be described by
a simple diffusion equation and an associated effective
diffusivity or dispersion coefficient. Later, Aris [2] ex-
tended that analysis and added the effect of pure Brow-
nian diffusion to the problem. The form for the disper-
sion coefficient for viscous flow in a straight tube of
radius “b” is given by
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where D is the translational diffusivity and U is the
mean solvent velocity in the tube.

The first term in equation (1) is the contribution from
pure diffusion along the flow direction, and the second
is due to the coupling of radial diffusion and axial con-
vection. This result, however, has limited application
and is only strictly useful when the solute is isotropic
and its size is very small compared to the size of the
vessel supporting the flow. As the particles become large
relative to the vessel, the interactions between the par-
ticles and the solid boundaries become increasingly im-
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portant as pointed out by Brenner [3]. This considera-
tion was later taken into account in the work of Foister
and van de Ven [4] where the effect of hydrodynamic in-
teractions between the boundary and the patticles were
taken into account.

At long times the nature of the dispersion is nicely
described by the single parameter K and there is often
little need to bother to calculate the detailed form of the
concentration profile of the solute. Indeed, it is normally
only necessary to evaluate certain moments of the con-
centration profile. At short times, however, it is normal-
ly necessary to evaluate the actual concentration dis-
tribution in space and time. A number of authors have
addressed this problem, including Lighthill [5] and
more recently Smith [6]. The approach typically used
for such problems is to find an asymptotic solution for
the concentration distribution which is valid at short
times. The method employed by Smith [6] was an ex-
tension of the ray method developed by Cohen and
Lewis [7] and Keller et al. [8]. The early stage
characteristics are important because for many applica-
tions, such as arterial blood flow there is insufficient
time for complete cross-mixing of the solute across the
supporting channel to be achieved.

Clearly, the dispersion coefficient will also be a func-
tion of the detailed structure of the solute. Recently.
Brenner et al. [9-11] have considered the dispersion of
sedimenting, non-spherical, rigid particles. In contrast
with a spherical particle, the dispersion of a non-
spherical particle generally depends upon its orientation
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relative to the direction of shear flow. The goa. of this
work was to consider the specific problem of flexible
chains (as modelled using a simple elastic dumbbell)
dispersing under shear flow in order to examine the ef-
fects of deformability of flexible polymer chains due to
shear flow. This work also attempts to describe the in-
itial stages of dispersion in addition to the case of steady
Taylor dispersion at long times. In section 2, general
convective diffusion equation governing the motion of
the elastic dumbbell is developed and associated averag-
ed functions are defined for further uses. The early dis-
persion characteristic of the elastic dumbbell in simple
shear flow is examined in section 3 with the aid of ray
method. [n section 4, the steady Taylor dispersion at
long times is considered for both simple shear and
Poiseuille flows in order to examine the effects of flow
profiles on the dispersion characteristics. Finally section
5 is devoted to summarize the results. This werk does
neglect, however, the existence of hydrodynamic inter-
actions between the polymer and solid boundaries.

Throughout this study, the results for the elastic
dumbbell model will be compared against the predic-
tions for single Brownian particles. The theory for the
dispersion of single Brownian particles can be found in
Appendices A and B.

GENERAL CONVECTIVE DIFFUSION EQUATION

The model which will be used here is that of the
linear elastic dumbbell pictured in Figure 1. This model
is the simplest possible description of a fiexible polymer
and has been used extensively in the description of the
fluid dynamics of polymeric liquids. An extensive
review of the applications of this model for bulk solution
properties can be found in the book of Bird et al. [12].
Recently this model has been used by Aubert and Tirrell
{13] for the calculation of the effective viscusity of
polymeric liquids flowing through confined gevmetries.
Their work specifically dealt with evaluating the effect of
the confining boundaries on the stresses contributed by
the polymer chains. The model envisions the polymer
chain as two beads connected by a linear spring force
with all of the frictional resistance of the chain imbedd-
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Fig. 1. (a) The Elastic Dumbbell model and (b)
Spherical Brownian model.
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ed on the two beads. Throughout this study com-
parisons wilk be made between the dumbbell model and
the case of a single Browinian particle represented by
single bead of friction. {See Figure 1). The conformation
of the chain is described through a distribution function
1,&(11, =y t) which prescribes the probability that bead 1 is
located at £, and bead 2 at location £, at time t. The dif-
fusion equation describing the evolution of ¥ can be
developed by considering the appropriate force balance
for each of the beads. This approach is thoroughly
discussed in reference {12] and leads to the following
equation:
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where H is the force constant of the spring, ¢ is the fric-
tion coefficient of each bead and kT is the Boltzmann
energy. The velocity of the fluid at each of the bead posi-
tions are ~, and ¥, respectively. First term in equation
(2) is the accumulation of the probabiiity of distribution
function, second represents the hydrodynamic friction
due to flow, third is the spring force term which is thak-
ing care of the deformability of flexible polymer chains,
and the last is due to the Brownian movement. Since we
are interested in the dispersion of the dumbbell, it is
necessary to solve the time dependent problem and we
have chosen to restrict our attention to the following in-
itial condition:

¥ (r, r;;0) =8 £,) 6 (r,) 3)

The choice of this specific initial condition will only af-
fect the initial dispersion of the dumbbell and not the
steady Taylor dispersion. Even for case of the initial
dispersion the important qualitative results reported
here are independent of the initial condition chosen.

It is convenient to introduce dimensionless variables
by scaling against a characteristic length A, velocity gra-
dient e and time T,. It is appropriate to pick the gap
width of the confined geometries as a characteristic
length, since we are interested in the dispersion of the
solute due to the confining gecmetries. As far as a
characteristic is concerned, we can have two choices.
First one is related to the time scale with which the
solute can diffuse across the gap width of the boun-
daries. The steady Taylor type dispersion will be inter-
pretated with this tinie scale as will be shown in section
4. And second choice is the relaxation time scale of the
anisotropic deformable solutes like macromolecules.
The early dispersion characteristic will be explained
with this time scale in section 3. Equation (2) can be
then rewritten in the fulluwing form where the variables
L,4, and t and parameter ¥ are understood to be dimen-
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Here B =aT,, T, = A%D, D = kT/2¢, T, = £/4H and final-
ly €=T.JT,. In addition to being the ratic of the time
scale for the dumbbell to diffuse across the gap to the
relaxation time of the dumbbell, the parameter e is also
proportional to the square of the ratio of the dumbbell's
radius of gyration to the channel gap. D has a dimension
of (lengthy/time and it is known 3s the translational dif-
fusivity of the elastic dumbbells. The boundary condi-
tion which will be used is that the flux of probability
normal to any surface is zero. If a surface has a normal
vectcr £, the boundary conditions are:

4 on the boundary:
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It is also convenient to introduce the center of mass
coordinates £, and the bead separation vector* according
to the following definitions:

c=1{r,+1,)/2 1
=r,—r (8)
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We shall restrict our attention to the case of unidirec-
tional flows in the x-direction between parallel plates
with gradients only in the y-direction. Furthermore, it is
useful to define the following averaged functions which
will be used in later calculations. The first such function.
O(x., y1. y2:1) is defined as:

¢:fffdx dzxdzzy’(xh Y1, Zy, Xp, Yoo Zz;t) (9)

It is a kind of simplified distribution function and the
reason why we are interested in this distribution func-
tion is that we would like to examine the x direction
dispersion due to y directional boundaries so that the in-
tegration over x,z, and z; will leave the distribution
function to depend upon only %, y. and y and it will be
easy to handle. This function is described by the follow-
ing equation:

22 20
+'8L ax<- 46 ay \E ) o~ Be 8y1]
1 2 3o

| . 0
P 8y2[ —v,) &8¢ 8sz

subject to the following boundary conditions:
y; on the boundary:

2]
<yz—,vl)¢—8ea—;’f~l=o (11a)
y2 on the boundary:
(yi—vy.,) ® —8e oo =0 (11b)
3y,
where U=%[U (y0) +U (y,)) (12)

and U denotes x component of velocity vector. The in-
itial condition for equation (10} is

@ (xe, ¥y, ¥2i0) =8 (%) & (V1) & (ys) (13)
The second set of averaged functions are the moment p*
defined by:

P*{y,, )’z;t)z_/::dxc@ Xe, ¥, Yai1)xE (14)

These moments obey the following equation:
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with the initial condition that
P*(y,, ¥:30) =6x 08 (v) & (va) (15b)

The boundary conditions for equations (15) are identical
to equation (11a) and (11b). Finally, the following addi-
tional averaged functions are defined:

PTE(U =de1v/dY2Pk(j)'1y Yoit) (16)

These functions evolve in time according to:

dP*(t)
dt

)

=gkUP* '"+k(k-1)P** (17a)

with P*(0) =64 (17b)

Analogous averaged functions have been used in the
past for the solution of problems involving single Brow-
nian particles and were first indroduced by R. Aris [2]
By solving for P! and P? from equation (17), we obtain

1 dP?

5 a CALPHl (18)

dP? ‘

o AuP (19a)
=BUP® ¢ (19b)

The dispersion coefficient K; for dispersion in the i direc-
tion is formally defined as one half of the time differen-
tial of the variance of the particle concentration distribu-
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tion. The dispersion coefficient in the direction of x, can
be related to the first and second moments defined sa {c
and is given by

Ke_ 1 dP?_— dP’
D 2 dt dt (20a)
=1+p2%,(t;€) (20b)

Similarily in the case of the ydispersion coefficient we
can easily obtain the following result:

Koe _

o=
Here h; and h, are unknown functions which only de-
pend on t and e. They can be determined once the spe-
cific velocity field is given. Since the x. dispersion coef-
ficient is of main concern, K without any subscript will
denote x. dispersion coefficient from now on. It can be
easily verified that these results are valid for any unidi-
rectional flow in the x-direction when the boundaries
are taken to be parallel to the flow. It can be also shown
that the dispersion coefficients for the single Brownian
particles are of the same form as equations (20b) and
(21) except that € is zero. Having introduced the above
definitions, we shall now proceed to analyze two specific
flow fields.

h, (t;€) (21)

SIMPLE SHEAR FLOW

The first situation which we shall consider is a sim-
ple shear flow between two parallel plates which are
separated by a distance 2 as shown in Figure 2. The co-
ordinate system will be taken midway between the
plates and the dimensionless velocity field is given by ¥
=(y, O, 0). The x component of velocity of the center of
mass of a dumbbell is then U = (y, + y,)/2. The analysis
will be carried out over two time domains. The first case
is that of the initial dispersion of a point source of dumb-
bells initially located at the origin. In this case we need
to stretch the time scale into the relaxation time scale of
the dumbbells to exaniine the effects of the aisotropic
deformability of the dumbbells.

Using equation (10) and defining r=B8E, and a new
dimensionless time t” =¢€t, the following equations for

Fig. 2. The flow geometries for (a) Simple shear
flow and (b) Rectilinear Poiseuille flow

between two parallel plates.

September, 1986

the moments of the distribution can be written:

d

a<x62> =2€ +27 <xcyc.> (22)
d 2

f Xeye> =t <yi>-2€ <02 (23)
d_

a<yc> =2€ +4e Ky, > (24)

where <B>— [ dxCI:dycfz”’ycdy B-o (25
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In writing equations (22)-(24), we have dropped the
prime on the time. And these second moments are
directly related to the dispersion coefficients by defini-
tion.

In order to evaluate the moments specified by equa-
tions (22)-(24) it is necessary to determine the averages
<X >and€y >which arise due to the boundary condi-
tions. For this purpose we require a solution for the
distribution function @. To proceed we shall use the ray
method developed by Cohen and Lewis [7] (1967) and
Keller and coworkers [8]. This method can be used to
obtain asymptotic estimates of diffusion process at small
time. In our situation the expansion parameter will be
taken to be €. This analysis technique was recently ap-
plied to the dispersion of single Brownian particles by R.
Smith [6] and we shall largely follow the procedure he
developed in order to study the elastic dumbbell. One
first assumes a solution for @ of the following form:

d=A exp(—sz 27)

Here both A and S are functions of x. y;, v, and t. Substi-
tuting this into equation (10) and collecting similar terms
in the parameter €, we obtain the following results at
order O(1) and O(e):

S+ (Yz_)h) ’:Syx_ Syz)+ (Syf+sy,2)+r (Y1+Yz)

S (28)
At lyi—y) ‘(Ay‘;Ay’) (Aynsy,iAy,Syz)
E%—%JA:O 29)

Equation (28) is refered to as the eikonal equation. This
is a nonlinear first order partial differential equation and
can be solved by the method of characteristics. If we
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choose the ray parameter as time t, then the charater-
istic equations are given by:

%? _ Ql—_y) n S4y- (308)
%g: Lylzi__ﬂ)?+§4’i (30L)
33.(6 (.v,;‘y ). Sgn (30c)
t:y, 6_;&)"_ i §;’L (304)
Ci;yl _ (S,,4— S,.) . SZXC (30e)
(ii:xc (30f)

Along these rays both equation (28) and (29) can be
shown to be the following ordinary differential equa-
tions respectively:

dS Sylz+ Syzz SXcz

& 8 8 16 51

2 2 H
e (32)

dt 2 8 8 16
In order to solve equations (30a) to (30f), initial condi-
tions need to be specified. The initial values for S,., S,,,
and S, will be taken to be 4q, 4r and 8p respectively.
These ray parameters identify the rays through which
information is transmitted. The solutions to equations

(30a) to (30f) are:

. 1
X~ Xea ™ (Y|o+)’zo)tzpt (I—E‘rztz)

x
2

T 2
:’Z(q+r)t (33a)

(Yi—y) ~ (y\o_Yzo)exp(‘%) =2(g-r) sinh(%)

(33b)
yi+ya) = (ietyse) = (gtr)t— rpt? (33¢)
S, —-S,, =4 (@-r)—8rpt (33d)
Sy, =8p (33e)

whete X, V1o and yy are the initial values of x., y; and
y, respectively. Using these results, equation (28) can be
integrated to yield:

S=(q=r)*le*—1)+4p’t+ (g+r)*t—2zrp(g+r)t’

+%t2p’t3 (34)

For the specific initial condition (13) we can eliminate
the ray parameters to obtain:

1+Yz
4[Xc_ le—‘Jz ~ 2 _ 2
g— 4 _+[y1+y2) +[y. ytz] 35)
t[l*i 1?) t (1-ef)
12"

Following the procedure of smith [6], in order to
evaluate the amplitude factor A, it is useful to define the
following Jacobian which is related to the separation be-
tween rays.

9 Xy, y2)
b, aqr) 136)
This function obeys the tollowing equation.
dJ .- 1 Sy Ssy Sk
dt—JL 2+ 1 + i 8 ] (37)

Combining (37) and (29) it is clear that

AV Jexp (— -tz } =constant along rays (38)

This constant can be determined either from the solu-
tion for sufficiently small time (Smith, p112), or from the
conservation of total probability. The final result is:

A= 1 (39)

16 (5 ”) l.it (1_ e!) 0.5 (1+1_]‘2 thz) 0.5

These results for @ obtained from equations (27), (35)
and (39) can be shown to be identical to the exact solu-
tion obtained for the single Brownian model by Foister
[4] if our result is integrated over all values of y
= y3-y). Using the ray method one can therefore obtain
the exact solution for the dispersion of the center of
mass of the dumbbells in the ahsence of boundaries.
Furthermore, one can show that both the single Brown-
ian model and the elastic dumbbell model predict iden-
tical dispersion characteristics. This similarity between
the two models will disappear, however, once bound-
aries are included due to the fact that the linear dumb-
bell cannot sample the entire region between the
boundaries with equal probability. The solution obtain-
ed so far is referred to as the incident solution and the ef-
fect of boundaries can be taken into account by con-
sidering the reflection of the rays at the boundaries. As
time passes the reflected rays increase in importance
relative to the incident rays and in general, multiply re-
flected rays must be considered at longer times. In this
calculation, however, we have only considered the ef-
fect of the first reflected rays at either the bottom or top
boundaries. With reflected rays taken into account, the
following form for @ is assumed.

)+ Agexp (— §"—) (40)

@ =Arexp (= 16€

where the subscripts | and R refer to incident and reflec-
ted rays respectively. The following conditions are used

Korean J. Ch. E. (Vol. 3, No. 2)
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at a point of reflection:

S;—Sx 41)
A‘, — ly. SRy. 5
. (ya—y)+ ]/(( 5 ] 42)

Using the boundary conditions and the results given for
S, and A, in equation (35) and (39),S, and A, can be ob-
tained. The integrals<x.»and<y, »in equations (22)-(24)
can then evaluated approximately as:

Ve, (1)

<<yc>>=me, 0 {exp[— ie el(t)]-expr46 L
1
t exp[ 4Eez (t) J terf [ éx(t) jo-s
2V ﬂﬁez V i ) k46‘32(13)
te, (1) <,
+erf[——‘~4€e1 BE % (43)
Tt
G:XC>=? (yc> (44)

assuming that AjAg = 1 for small time et€Ve and e(t)
= l-exp(-t) and e;{t) = 1 + t-exp(-t).

Inserting these functions of time into equations (22)-
(24) these equations can be numerically integrated to cb-
tain the moments < /2>, <xy,>and<y>. The disper-
sion coefficients K _and K _ can then be calculated
directly from these second’ moments since the first
moments, < x> and < ¥.> are always zero in a simple
shear flow. The result of this analysis for K. is shownin
Figure 3 where the time dependent dispersion coeffi-
cient is plotted for several values of €.

APPROACH TO STEADY STATE (TAYLOR)
DISPERSION OF THE ELASTIC DUMBBELL

Simple shear flow

The approach to steady state dispersion can be solv-
ed by considering equations (10)-(17) where U is y,. First
of all, we know that the moment P'(y;, yz; tsoo) is only a
function of y of the form:

Z
— — f____ 3
P°(y,, yp3t—>00) =Coexpl 16e] {45)
C
wh C, = 1 46a)
where C, Ve (46a)
Lo+ (-1 @)

C, \/—v— s

This result can be easily obtained front equation {15a)
for . This function is direct y related to the center of
mass distribution function Cy, : t) which will be defined
later. Using this result in the same equation for P'(y, ys;
tro0) we have:

September, 1986
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Fig. 3. Initial x. dispersion of Elastic Dumbb -

ell for simple shear flow for various
values of € (The only coupling effect of
radial diffusion and axial convection is
shown and it is based on equations ( 22)

.(24),(43) and (44).

P! 2 _y .8 y?
a1 45y el lse] y Bleelig )i

_ 9P y?
ay /9)’cco eXP(“ Ige_) (47&)

y? . 2 y? P
2 p: +9=
166) 1 exp(lGe)]_ayC 0 (47b)

at y== (2-2y.)
This function is also directly related to the centroid

Q(y.; 1) which will be defined later.
The center of mass distribution C(y,; t) is defined as

2exp (—

22y,
Cloeiti= [ " dy Py vast) (48a)
2

Ye—2
Using equation (45), the steady concentration distri-
bution can be obtained, and it is clear that it does not de-
pend on the specific velocity profile. This is plotted in
Figure 5.
The centroid Q of the concentration distribution is
defined as

2-2y, ) '
Qlye;t) =f dy P'ly, ya3t) (48b)
2¥e-12

Using equation (47), Q can be shown to obey the follow-
ing equation:

3_Q _ yv? y? y=2-25,
ot 4 {exp ( ~16€) xp(lﬁe)]% rves
2 { .
2'Q 1 erf(l—vye)
=—B8C,y (=" (49)
e ﬁ yel e )
°Q _ 0 aty.==1 (50a)
dyec
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J., Q dye=0 (50b)

From equation (45), P* will be independent of y,. at
long time and fronm equation (9), it is alsc clear that at
long time, the x. dependence of ®(x,, v, vt} will
become increasingly smaller and can be neglected.
From these two facts and the relationship between P
and @ given in equation (14), 9P'/9y, anda ¥/9y, ap-
proach to zero at long time. It can then be concluded
that 9P'/9y, approaches zero along with these two
derivatives by the similar argument. The second term in
equation (49) will then disappear from the boundary
conditions given in equation (47b), and that equation is
easily solved giving:

; 3{6&,*;—@-‘1 ) erf(z)
’*V‘%[&—ézﬁ 3 ,]exp(-z’)+-zﬁa?)
gty lert @+ () EREE sy
where z=a(1-y.) and a=2—“vl;?.

The dispersion coefficient can be found directly from
the centroid function to be

Ky=D_ 2C, 515
2°D 15 (T g gaelert @)
cpeelzaly 1 11, 1
VA oy +8& 16a‘] [\1 7{]
55 1 i
ol (52)

As € — O (ur as the channel width beconies large
compared with the dumbbell), this ratio approaches a
value of 2/15 which is identical to the result for a single
Brownian particle as one would expect. On the other
hand, as e approaches infinity, the ratio in (52) tends to
a velue of 13/24, slightly greater than half of the
previous value.

Rectilinear Poiseuille Flow

First of all, let us calculate the average velocity of the
dispersing cloud of elastic dumbbells. This is calculated
by simply averaging the Poiseuille velocity field against
the function P'(y,, ys: t =00 in equation (45). [f we de-
fine A as the ratio of the average velocity for the elastic
dumbbell medel to that for a Brownian particle, we have
that:

A .. 3 e 1 2 2
C‘f\l 2az]erf(a)+\/7[a a3]+ —

(53)

where C, is given in (46).

One interesting result is that A approaches unity as
e=0and e= oo, sy that it passes through a maximum
at a certain value of e. Now let us replace the longitudi-
nal coordinate, x, with the variable € = x-2A1/3 because
the center of the cloud will be moving with the average
speed of 2A/3. The equation for k's monents of x,, P¥
becones

oP* o ) e ¥
ot 4ay<xp( 16e)8y (p expklse)h

oP* 2A
— =k =
oyl Al 3

2

=yi= Pk k- PR
(55a)

with the same boundary condition as before.

And

d
dt

Pk
—kﬁ(1—~3— é—i—]P‘ 4k (k-1 P
(55b)
and again, the boundary condition is unchanged. From
the equation for P' we then obtain the dimensionless
centroid function exactly as:

4Q (z) 1 z 1
4C, [ az][(z ,—48,)erf(2)
.2
_zexp(’_—z)_ 2 +\z‘ 2z° +
22V 7 a*y n fa* 3a’
7 5z z® 2zt z 4
Flert (2 A s
garer ) - T G s e T
cexp(—z%) o
——=1+C, 567
Vr ‘
where
.2 1 5 . . exp(—a*) 2
—fc — 2 st expilal) ¢
Com g7 2a7 gaeierf@ V7 I5a
_17 9 1+ _[
30a® 10a° Vx 6a’ lOa
RIS S S
+ z] Vo EZa bal- [6 42]erf(a
expi—a’) v
- S [— —-]» 57)

In order to calculate the dispersion coefficient for-an
inhomogeneous flow field as in the present case, it is
necessary to evaluate the function P'(y;, y»; t — o) in
detail instead of simiply using the centroid (}{z) which
was possible for siniple shear flow. This is a formidable
task, however, and we shall resort here to a perturbation
solution in the paranieter e . In the limit of small €, any
variation of the velocity gradient vver the length scale of
the dumbbell can be neglected. Therefore it is only
necessary to consider the average velocity of the center
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of mass of the dutubbell and not the velocities of the in-
dividual beads. If this approximation is made, the rela-
tive average velocity A and the centroid are:

A - 3 1 Jexp(—a?)
A - fi 4L
C, 1 4a’ ) eriie) [ 2a’ ) Vr
1 o
?55? (58)
y T
Qiz) ,2x 2zt 1. zexp {—a?) z
L2 e (o) F :
2 \3]'&2 4]cr Ve v;}
ozt oz z 3 . z
bt B 2 2 Yerflz) - —fe
“12a° 3a 2a 16a2]” 2 332\/”,}"
A A z exp (
S U122 3a 24a ] \q +C
(591
here
c ,L(i, 1 ) [i__ll__l__ exp (—a’)
Y Vr'6a 15 60a 5a°° A7
2x a4t 1 a 1. exp(—a?)
{[6 Jerf (a) [6 +6a ——-——~v;
1 1 a? 1 3 .
Ve 6 —+— ] [E—Z—é‘;,—]exﬂa) {60)
w
Then the dispersion Coeffimem is
| ST 24,13 1 .
( D 1:/8%=C4 [3 ]‘<45 16a° Jerf(a)
13 7 1 . exp(—a? 1 1

« I
Y 9’ " 3a

1.1 58 1 1 W
T 3.V H[ 315 6a’ 8a' 32a° "

(—

45a 360a® 30a°

1 2 1.1, . 38 337
MRS TICR 9a’]\/’; (= 3152 " 252000
89 1 exp(—a®) % 61)

T 560a° 142" Vr
However, this dispersion coefficient is only valid up
to 0(/ €) since this is the relative size of the dumbbell to
the channel gap. Upon retaining terms of that order in
the above equalions we have:
.K x¢ —— 1= JT\/’_E
945 A 4
As in the case of a linear shear flow, the abuve result
for Poiseuille flow tends tu the single Browuian particle
result (in this case 8/945) when e tends to zero.

-1}/8*= 62)

DISCUSSION AND CONCLUSIONS

The results obtained above are summarized in
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Table 1. Boundary effects on dispersion coeffi-

cients for simple shear flow.

Solute  Infinite domain Between two plates

N K ch {~ )n

S.B. B’C__;l 3 o ’E\ ‘;\17 P T
Kee Kee 1,., = (=D" 2
[D 1/}9 [D I]/ﬁ*mZo ;’: l F)

— Kyc B Kyc

E. D. p ! o 0
K:c ~ K 2 3yl€
(= -L/g=¢ (F-1/8 2 F 2=
D g ( D Ve 15 v )

for small €
*

—~ means the approaching quantities as time goes
to infinity,

**S. B.and E.D. denote the single Brownian and
the elastic dumbbell models respectively.

***2a and u, are defined in Appendix A.

Tables 1 and 2. The predictions found for the elastic
dumbbell model are compared against the correspond-
ing results for a single Brownian particle. As indicated in
Table 1, both particles have the same dispersion charac-
teristics in unbounded flow but differ when placed bet-
ween the confines of parallel, solid boundaries. In that
case the parameter €, the ratio of the time scale for
diffusion across the gap to the relaxation time of the

Table 2. Flow effects on steady taylor disper-
sion value of ‘K. /D—1]/8%

Simple shear Rectilinear Poiseuille flow

Solute flow poiseullle in a tube
flow
2 88 9
.B.* = 7
S 15 945 3072
(1] (0.0635)  [0.0220)
}%"rrlljfill € —[(1- z2ve. 8 17 ’,_ e
15 Vi~ 945 N

*S.B.and E.D. mean the single Brownian and el-
astic dumbbell models respectively.

**To take into account the decrease in average
velocity gradient exerted to molecule due to the
concentration distribution by using 8" =k,.8
where

1 1 _a2
= o+ (a) —— as _
ke [1+—2a2]erfa+\ a[e 2]
then it becomes
8 . 9V e
— 1= 7=
945 2V z
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Fig. 4. Steady x. dispersion of Elastic Dumbb-
ell normalized by that of Spherical Br-
ownian model as a function of € (Upper
one is for simple shear flow based on
equation(52) and lower one is for Poise-
uille flow based on (61)).

dumkbbell, becomes inmportant. As previously mention-
ed, this parameter is also proportional to the square of
the dumbell’s radius of gyration to the channel gap.

For the time-dependent development of dispersion
characteristics, there are three different regions, of
which the first two are shown in Figure 3. For very short
times. the dispersion cocfficient will respond as it would
for an infinite domain and the elastic dumbbell will
disperse in a fashion similar to a single Brownian parti-
cle. Very quickly, however, the effects of finste values of
the paranieter € become important.

In the final stage, where steady Taylor dispersion is
approached. an exact solution for the elastic dunibbell
mode! in a simiple shear flow was obtained and the
results are given in Figure 4. Here the dispersion coeffi-
cient is plotted against the parameter € and t\e intercept
at € = () represents the case of a single Brownian part:-
cle. As e increases, the dispersion coefficien® eventualty

l

Fig. 5. Steady center of mass distribution of
Elastic Dumbbell model as a function of

yc for various of €.

1 ~
.8

R

= .6

=

~ 1
.,t

Fig. 6. The x. dispersion of Spherical Brownian
model as a function of dimensioniess ti-
me scaled by r.(Upper is for Poiseuille
flow based on(B9) and lower is for sim-
ple shear flow based on(A23)).

decreases to approximately one half of the value for the
single Brownian particle. This decrease is simply a
reflection of the fact that increasing the size of the dumb-
bell relative to the channel gap causes the patticle to
samiple a restricted range of the velocity field across the
gap. The coupling between convection and Brownian
diffusion is thereby decreased. This point can be made
clear by consideration of the concentration profite of Fig,
3-5, which indicates that the dumbbell is unable to ap-
proach to the solid walls and sample the velocity field in
that region. Another important finding is that the
decrease in the dispersion coefficient with increasing e
oceurs rather quickly and has approached its final value
to within a few percent after e is raised to 0.1,
Dispersion depends on not only the vertical distribu-
tion of solute, but also on the vertical velocity distribu-
tion. The transien:t behavior of a single Brownian patti-
cle is shown in Figure 6, and it takes a much longer time
in case of simple shear flow than in Puiseuille flow to
achieve steady Taylor dispersion. The reason is that in
Poiseuille flow there is a region of larger velocity gra-
dients near the walls where the concentration is com-
parably low. This allows the approach tv steady Taylor
dispersion lo occur sooner and to also have a somewhat
lower dispersion coefficient than for simple shear flow.
The other factor governing the tevel of quasi-steady dis-
persion is the geometry of the boundary. As shown in
the first row in Table 2, the effects of flow and geometry
are tremendous when one considers the differences be-
tween flow between parallel plates and down circular
tubes. Simple shear flow is by far the most effective dis-
persing flow when compared with Poiseuille flow. On
the other hand, the difference in the dependence on the
parameter € between siniple shear and Poiseuille flow is
only slight when one considers the elastic dunibbell

Korean J. Ch. E.(Vol. 3, No. 2
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NOMENCLATURE

pre-exponential factor of ray expansion, |
and R refer to incident and reflected rays
b - radius of tube

D . translational diffusivity

H . Spring constant of dumbbells

J . Jacobian defined in (36)

kT : Boltzman energy

KK, K, Dispersion coefficient, xc and ¢ refer to
X and y,. directions.

| Characteristic length

n : Quter normal unit vector

t : Time

p : Kth moment of %, defined in (14)

p¥ : Averaged kth moment of x, defined in
(16)

Q . Dimensionless centroid function

n, b, ! position vector

S(S;. Sg) Exponential factor in ray expansion, |
and R refer to incident and reflected ray

U . Mean velocity

Ui, Us velocity vector

X1, X3, X © X components of position vectors

¥i.¥2, Yo @y components of position vectors

Zy, 22, 2o -z components of position vectors

Xeos Vio, Yoo o Initial value of x., vy, y»

Greek Letters

a . Characteristic velocity gradient

& Kronecker delta

€ Ratio of characteristic times

¢ Friction coefficient

A . constant

Anum o Eigenvalues

T . Characteristic time */D

Tk . Characteristic time for dumbbells

o . Integrated distribution function defined in (9)
¥ . Distribution function defined in ( )
<B> Averaged qunatities defined in (25)
<C>» Averaged quantites defined in (26)

Appendix A. Spherical Brownian in Simple
Shear Flow

Dimensionless governing equation and its auxilliary
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conditions are;

o9 a9 3¢ 2P
= 4 o — ~ L ¥ _
ot PV T ant oyl (A1l
[ (\'XL"yC):b\ (X()b\ (yc) at  t1=0 (A2)
o9
- L4 \
ay. 0 at y,=+1 (A3)
If we define
Pk[/yc;t): dexcxckQ(X/'yYC;‘) (A4)
then
aP*  2'P* et 1 .2 .
o1 " pyr ~AkPTHKk-DP (A3)
Flyest) =8ko 8 (ye) at t=0 (A6)
Pk
° =0 at yo= %1 (A7)
Idye
dp* - —
E“=/S?kycP"“«l\-(k—1)P"’2 (A8)
P*(t)=6,, at t—0 (A9
where
1
PR = [ dvePrivesn) (A10)

If we try the separation of variables in PXy,: 1) or put
PXy.: ) = Y(y)T(1), then we obtain twu series of eiger-
values and corresponding eigenvecters for Y(v,). One is
An=nTand Y, (y)=cos(A,y} and the other is pu,, =
(m+ 1/2)Tand Y, (y.) = sin{u,,y.). The first one is even
with respect to y,, and the latter is odd. We know that
P’(y.: 1) is even with respect to v., so we have

P (yc;t) = % + 3 cos(Anye) expl—A,%t)
n=i

(Al1)
In case of P'(y.; 1), we have
oP' 8P . .
PrdaEN == By, lyest)
o1 oy ByeP® lycst) (Al2)
P'iye;0) =0 (A13)
1

9P o at yo—+1 (Al4)

a Ye

It is obvious there is no homogeneous solution except
zero to satisfy the initial and boundary conditions so that
we can have an unique solution for P'(y,: t). Let us use
the method of eigenfunction expansions by putting:

Pliye;0= 3 sin(pnye) Talt) (A15)
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veP(yest) = fo sin (gmye)Cn (1) (A16)
e
Then C,,(1) can be obtained from the orthogonality of

eigenfunctinns

Cﬂ(t)* 1‘L+E '\l—\z‘( 1 mk
1 .
— —— (A17)
[ +Ak Iuﬂf_ )(kz ] '
Then equation for T, (t) is
d%* i T (1) =B Cu (1) (A18)
Talt} =0 at t=0 (A19)
Then we have
(=)™ (—1)m+t
Totti—g L0 g mre s Y
Mm L /Um Ak
- 1 — *.‘41‘ —ik2t _  —um?t
[ ﬂm+/\k)2 (/lm‘/\ )z]LQ —e ]
{A20)
So we have
P'(ye;t) = X sin(uaye) Talt) (A21)
Kee (13 D2 - (A22)
D T3 & A7 P A
Ko -
=1+24" s ‘T (t) (A23)
D m=0 ,L[m

Appendix B. Spherical Brownian in Poiseuille
Flow

In “his case Py, ; 1) is exactly sanie as before, but for

P'(y.: t) we have
ob'_ o’F!
ot ove

with samie conditions as before. Let us try

“lyest) (B1)

=8 (1-yAP

Pllye;1) =808, (1) = X cos(Auve)S, (1)) (B2)
n=1

A=y P (yost )=Df,(()~r,§‘ cos (Any ) D (1)

(B 3}
Then we get
D (llii‘z,f nexpl’—k"’ﬂ B4
=g m2F e (=AY ,
2i-p" 2
Dty = P 'W“L?_ /\JJQ‘CP\_“)
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; o [ 1\k+n 1
+2:“:?:l( 1) [)\meer]exp( Alt)
(B5)
Then we have
Se (t) = +2 E ( [e\(p Aft)—1) (B6)
2 (—1) : :
Sn(t):’:[g'— 2 Jt exp (= A%t
2(-1
+ — [1~exp\—l t)]
An
+ 22 + L
rsL {/\mn Akon ][ /\k]

le kit — e )t (B7)

In order to get K, /D, we should know P! and dP-'/dt.

Kee 1 dP?

] o dP?
D 2 dt dt

(B 8)

After tedious calculation, we finally obtain

Kae 2 _ = (=1 e 2z+42 (="
[—]5““1]/49 Se 2 e T ——Sa

(B9)
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