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Abstract-- Molecular mr approach has been used to predict the dispersion characteristics of flexible 
polymer chains in confined geometries. The analysis ranges from the early stage dispersion to the steady 
Taylor dispersion of the simple linear dumbbell model polymer chains. For the early stage dispersion, the ray 
method was applied; an Arts type moments rnothod was useful for the Taylor dispersion. Two parallel plates 
were chosen as a confining geometry and the specific initial condition of a point source in the midway of the 
gap was chosen for simplicity. It was found that the qualitative difference in dispersion properties of defor- 
mable polymer chains starts from the early stage compared with those of single Brownian particles. And it 
turns out that one parameter, which is similar to the relative spacing of the dumbbell to the gap of confining 
geometries, is useful to see the dispersion characteristics of the dumbbells. 

INTRODUCTION 

The dispersion of spherical particles in a flowing 
solution was first rigorously considered by Taylor [111 
over thirty years ago. It was pointed out in that work tha* 
the dispersion is the result of the coupling of Brownian 
motion to the convection arising from the flow. One 
remarkable result of Taylor's analysis was a demonstra- 
tion of the fact that, after a sufficiently long period of 
time, the dispersion of the solute could be described by 
a simple diffusion equation and an assc~ciated effective 
diffusivity or dispersion coefficient. Later, Arts [2] ex- 
tended that analysis and added the effect of pure Brow- 
nian diffusion to the problem. The form for the disper- 
sion coefficient for viscous flow in a straight tube of 
radius "b" is given by 

b ' U '  
K = D + - -  (1) 

48D 

where D is the translational diffusivi.t.t.ty and U is the 
mean solvent velocity in ~he tube. 

The first term in equation (1) is the contribution from 
pure diffusion along the flow direction, and the second 
is due to the coupling of radial diffusion and axial con- 
wection. This result, however, has limited application 
and is only strictly useful when the solute is isotropic 
and its size is very small compared to the size of the 
vessel supporting the flow. As the particles become large 
relative to the vessel, the interactions between the par- 
ticles and the solid boundaries become increasingly ira- 

portant as pointed out by Brenner [3]. This considera- 
tion was later taken into account in the work of Foister 
and van de Ven [4] where the effect of hydrodynamic in- 
teractions between the boundary and the particles were 
taken into account. 

At long times the nature of the dispersion is nicely 
described by the single parameter K and there is often 
little need to bother to calculate the detailed form of the 
concentration profile of the solute. Indeed, it is normally 
only necessary to evaluate certain moments of the con- 
centration profile. At short times, however, it is normal- 
ly necessary to evaluate the actual concentration dis- 
tribution in space and time. A number of authors have 
addressed this problem, including Lighthill [5] and 
more recently Smith [6]. The approach typically used 
for such problems is to find an asymptotic solution for 
the concentration distribution which is valid at short 
times. The method employed by Smith [6] was an ex- 
tension of the ray method developed by Cohen and 
Lewis [7] and Keller et al. [8]. The early stage 
characteristics are important because for many applica- 
tions, such as arterial blood flow there is insufficient 
time for complete cross-mixing of the solute across the 
supporting channel to be achieved. 

Clearly, the dispersion coefficient will also be a func- 
tion of the detailed structure of the solute. Recently. 
Brenner et al. [9-11] have considered the dispersion of 
sedimenting, non-spherical, rigid particles. In contrast 
with a spherical particle, the dispersion of a non- 
spherical particle generally depends upon1 its orientation 
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relative to the direction of shear flow. The goa of this 
work was; to consider the specific problem of flexible 
chains (as modelled using a simple elastic dumbbell) 
dispersing under shear flow in order to examine the ef- 
fects of deformability of flexible polymer chains due to 
shear flow. This work also attempts to describe the in- 
itial sta~es of dispersion in addition to the case of steady 
Taylor dispersion at long times. [n section 2. general 
convective diffuskm equation governing the motion of 
the elastic: dumbbell is developed and associated averag- 
ed functions are defined for further uses. The early dis- 
persian characteristic of the elastic dumbbell in simple 
shear flow is examined in section 3 with the aid of ray 
method, in section 4, the steady Taylor dispersion at 
tong times is considered for both simple shear and 
Poiseuille flows in order to examine the effects of flow 
profiles on the dispersion characteristics. Finally section 
5 is devoted to summarize the results. This work does 
neglect, however, the existence of hydrodynamic inter- 
actions between the polymer and solid boundaries. 

Throughout this study, the results for the elastic 
dumbbell model will be compared against the predic- 
tions for single Brownian particles. The theory for the 
dispersion of single Brownian particles can be found in 
Appendices A and B. 

GENERAL CONVECTIVE DIFFUSION EQUATION 

The model which will be used here is that of the 
linear elastic dumbbell pictured in Figure 1. Th:os model 
is the simplest possible description of a flexible polymer 
and has been used extensively in the description of the 
fluid dyaamics of polymeric liquids. An extensive 
review at the applications of this model for bulk solution 
properties can be found in the book of Bird et al. [12]. 
Recently this model has been used by Aubert ar,d Tirrell 
[13] for the calculation of the effective viscosity of 
polymeric liquids flowing through confined geometries. 
Their work specifically dealt with evaluating the effect of 
the confining boundaries on the stresses contributed by 
the polymer chains. The model envisions the polymer 
chain as two beads connected by a linear spring force 
with all of the frictional resistance ()f the chain imbedd- 

.Z 
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Fig. 1. 

--X " X  

(a) The Elastic Dumbbell model and (b) 

Spherical Brownian model. 

ed ol~ the two beads. Throughout this study com- 
parisonswilk be made between the dumbbell model and 
the ease of a single Browinian particle represented by 
single bead of friction. (See Figure 1). The conformation 
of the chain is described through a distribution function 
~(zl' 4;  t) which prescribes the probability that bead 1 is 
located at z and bead '2 at ocatio ~ z at time t. The dif- 
fusion equation describing the evolution of Y," can be 
devek)ped by considering the appropriate force balance 
for each of the beads. This approach is thoroughly 
discussed in reference [12] and leads to the following 
equation: 

O~" F i f - -  [U, y,, -- ~-H kT c9'!b 
Ot o s  ~. (_r, - r ,  ) q,] ~" Or Z 

3fl72 H kT 3 2'k + [u,'c,-~-(_~,-r,),/,) r az~ =0 (2) 

where H is the force constant of the spring, ~' is the fric- 
tion coefficient of each bead and kT is the Boltzmann 
energy. The velocity of the fluid at each of, the bead posi- 
tions are t:1 and !22 respectively. First term in equation 
(2) is the accumulation of the probability of distribution 
function, second represents the hydrodynamic friction 
due to flow, third is the spring force term which is thak- 
ing care of the deformability of flexible polymer chains, 
and the last is due to the Brownian movement. Since we 
are interested in the dispersion of the dumbbell, it is 
necessary to solve the time dependent problem and we 
have chosen to restrict our attention to the following in- 
itial condition: 

(r,, r2;0)--6" ',s 8 (_r,) (3) 

The choice of this specific initial condition will only af- 
fect the initial dispersion of the dumbbell and not the 
steady Taylor dispersion. Even for case of the initial 
dispersion the important qualitative results reported 
here are independent of the initial condition chosen. 

]t is convenient to introduce dimensionless variables 
by scaling against a characteristic length 3,, velocity gra- 
dient a and time T,. It is appropriate to pick the gap 
width of the confined geometries as a characteristic 
length, since we are interested in the dispersion c.f the 
solute due to the confiui~g geometries. As far as a 
characteristic is concerned, we can have two choices. 
First one is related to the time scale with which the 
solute can diffuse across the gap width of the boun- 
daries. The steady Taylor type dispersion will be inter- 
pretated with this time scale as will be shown in section 
4. And second choice is the relaxation time scale of the 
anisutropic deformable solutes like macrom~lecu]es. 
The early dispersion characteristic will be explained 
~ith this time scale in section 3. Equation (2) can be 
then rewritten in the following form where the variables 
z z 2 and t and parameter L are understood to be dimen- 
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sionless. 

2!3 '~ 

# (4i 
os - ~te - - r 2 

Here ,8 = aT,, T, - 3.etD, D = kT/2r T v = U,IH and final- 
ly e = TJT~,. In addition to being the ratie of the time 
scale for tile dumbbell to diffuse across the gap to the 
relaxation time of the dumbbell, the parameter ~ is also 
proportional to tile square of the ratiu of the dumbbell's 
radius of gyratiot~ to the channel gap. D has a dimension 
of (length)2ttime and it is known as the translational dif- 
fusivtty of the elastic dumbbells. Tile boundary condi- 
tion which wil l  be used is that the flux of probabil i ty 
normal to any- surface is zero. If a surface has a normal 
vecter ~, the boundary conditions are: 
r on the boundary: 

a,/,] [a'u,/,+4-~-(_~,-,-,),/,- 2~-z, .~=0 (5) 
ra on the boundary: 

a,k] I.a_u,~'+43g (r,-z,)~-- 27z ' .a=0 (6) 
It is also convenient to introduce the center of mass 
coordinatesZc and the bead separation vector z according 
to the fol lowing definitions: 

rc = (r~ - r ,  )/2 (7) 
s - s  (8) 

We shall restrict our attention to the case of unidirec- 
tional flows in the x-direction between parallel plates 
with gradients only in the y-direction. Furthermore, it is 
useful to define the fol lowing averaged functions which 
wil l  be used in later calculations. Tire first such function. 
~(xr Yl, Y2 ;t)is defined as: 

r dz~ dza !k (x, yl, z,, xa. y% za ; t) (9) 

It is a kind of simplified distribution function and the 
reason why we are interested iu this distril)ution fun,,> 
tion is that we would like to examine the x direction 
dispersion due to y directional boundaries so that the in- 
tegralion over x,z~ and z2 will leave the distribution 
function to depend upon only xc, y, and y and it will be 
easy Io handle. This function is described bv the follow- 
ing equation: 

O~ 5krO~ + 1  a [ ( 2 , , ~ -y , ) r  
at ax( 4~ av~7 

~ a  ar 0 
4e Oy~ [ ( : ' ~ - y ~ ) O - g e  03% 

(10) 

subject to the following boundary conditious: 
Yl on the boundary: 

8~ O,~ (Y,- Y,) �9 - ~ =0  ( l la)  

Y2 on the boundary: 

O',-y,) @-8E2=0 (l lb) 

U = 1  [U (y,) 4 U (Y2)) (12) where 

and U denotes x component of velocity vector. The in- 
itial condition for equation (]0) is 

(Xc, Y,, Ya 0) =6" (Xc) 6  ̀(y,) 6  ̀(Ya) (13) 

The second set of averaged functions are the moment pk 
defined by: 

P"(y, .  y,;  t) = / : d . x ~  r (x~, y,, y, ; t)xg (14) 

These moments obey the following equation: 

OP" ~_1 a ~  ( y , - y , ) P ~ - 8 .  aP"] 
Ot Yl 

4_ 11_ ~ [(y _ y , ) p , _ 8  e oP']  
4~ ay, 

=,SkUP ~-~+k (k - 1)P ~-2 (15a) 

with the initial conditior~ that 

P~ (y,, y~;0):= 6  ̀~, 08 (Y06" (Y~) (15b) 

The boundary conditions for equations (15) are identical 
to equation (1 la) and (1 lb). Finally, the following addi- 
tional averaged functions are defined: 

p-~(t) = fay, fay, p~,y. y, ;,) (16) 

These functions ew~lve in time according to: 

dP~(t) 
d ~ - ~  % S k U P ~ - ' §  (k -  1)pk , (17a) 

with P"  (0) = 6"~, ~ (17b) 

Analogous averaged functions have been used in the 
past for the solution of problems involving single Br~)w- 
nian particles and were first indroduced by R. Aris [2] 
By soMng for pl and p2 from equation (17), we obtain 

1 d P '  
2 dt f lgP ' - - -  1 (18) 

dP 
d~- =..4' UP ~ (19a) 

P ' = f l U P  ~ t (19b) 

The dispersion cuefficient K, for dispersion in line/dime- 
tion is formally defined as one half of H~e time differen- 
tial of the variance of tile particle concentration distrihu- 
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tion. 3"he dispersion coefficient in the direction of x,: ca~ 
be related to the first and second moments defined so [,_ 
and is given by 

Kxc 1 dP ~ ~-TdP'  
D 2 dt dt (20a) 

= 1 +fi2h, (t;e)  (20b) 

Similarily in the case of tbe y~-dispersion coefficient we 
can easily obtain the following result: 

K .vc 
D =h= ( t ;~)  (21) 

Here hi and h2 are unknown functions which only de- 
pend ,an t and e. They can be determined once the spe- 
cific velocity field is given. Since the x~- dispersion coef- 
ficient is of main concern, K without any subscript will 
denote x~. dispersion coefficient from now on. It can be 
easily verified that these results are valid for any unidi- 
rectional flow in the x-direction when the boundaries 
are taken to be parallel to the flow. It can be also shown 
that the dispersion coefficients for the single Brownian 
particles are of the same form as equations (20b) and 
(21) except that ~ is zero. Having introduced the above 
definitions, we shall now proceed to analyze two specific 
flow fields. 

SIMPLE SHEAR FLOW 

The first siluation which we shall consider is a sim- 
ple shear flow between two parallel plates which are 
separated by a distance 2 as shown in Figure 2. The co- 
ordinate system will be taken midway between the 
plates and the dimensionless velocity field is given by t! 
= (y, O, O). The x component of velocity of the center of 
mass of a dumbbell is then U = (Yl + y2)/2. The ana!ysis 
will be carried out over two time domains. The first case 
is that of the initial dispersion of a point source of dumb- 
bells initially located at the origin. In this case we need 
to stretch the time scale into the relaxation time scale of 
the dumbbells to examine the effects of the aisotropk_' 
deformability of the dumbbells. 

Using equation (10) and defining r =  fiE, and a new 
dimensionless time t '  = ~ t, the following equations for 

,Z ~: __ Zc 

_----//yy~ ! X~ 

Fig. 2. The flow geometries for (a) Simple shear 
flow and (b) Rectilinear Poiseuille flow 

between two parallel plates. 

the moments of the distribution can be written: 
d 

7tt < X c ' >  - 2 ~  + 2 r  <Xcyc~> (22) 

d 
~t<XcYc> = r <yc2> - 2 ~  <~ .... ~ (23) 

d 
~-t < y c >  = 2 e  +4~ <<Yc>> (24) 

where " ( B >  = f :   cf:d. f,;;'Td, (25) 

f :  f : d y c  r C >> = dxc (C- r I~,~, 

- c .  ,~ I , , - -d (26) 

In writing equations (22)-(24), we have dropped the 
prime on the time. And these second moments are 
directly related to the dispersion coefficients by defini- 
tion. 

In order to evaluate the moments specified by equa- 
tions (22)-(24) it is necessary to determine the averages 

<<xc>>and<<y,->>which arise due to the boundary condi- 
tions. For this purpose we require a solution for the 
distribution function r To proceed we shall use the ray 
method developed by Cohen and Lewis [7] (1967) and 
Keller and coworkers [8]. This method can be used to 
obtain asymptotic estimates of diffusion process at small 
time. In our situation the expansion parameter will be 
taken to be ~. This analysis technique was recently ap- 
plied to the dispersion of single Brownian particles by R. 
Smith [6] and we shall largely follow the procedure he 
developed in order to study the elastic dumbbell. One 
first assumes a solution for r  the following form: 

S 
= A  e x p ( -  1-~e) (27) 

Here both A and S are functions of xc Yl, Y2 and t. Substi- 
tuting this into equation (10) and collecting similar terms 
in the parameter e, we obtain the following results at 
order O(1) and O(~): 

S t &  (Yz- y~) (Sy , -  S y , ) +  (Sy~A-Sy,2)-~ r (Y~+ya) 
2 

S ~  -7 Sx~ 
7 - - ~ g = o  (28) 

(Ay, -  Ay,) (Ay, Sy, +As ,  Sy=) 
At + (y~ - y~) f 

4 4 

Ax~ Ax~Sx~ Sy, y, S~,y, 
-c- r (Y~--Y') 2---}- ~ ~{- [ 8" - - -}  8 

S ~  1 
q 8 2 ] A = 0  (29) 

Equation (28) is refered to as the eikonal equation. This 
is a nonlinear first order partial differential equation and 
can be solved by the method of characteristics. If we 
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choose the ray parameter as time t, tt~en the charater- 
istic equations are given by: 

d,q (Y2- Y,) ~ Sy, 
d ~ =  4 4 (30a) 

dy~ (Y,-Y2) ~ Sy, (30b) 
dl 4 4 

~ c =  (YI--Y2) Sx~ 
- -  4 - - -  (30e) 

dl 2 8 

dSy, ( S , , -  Sy,) Sx~ 
(30d) 

dt 4 2 

dS~, ( S , , -  S, ,)  S ~  
d ~ - =  4 - r ~ - -  (30e) 

dS x~ 
~ - = 0  (30f) 

Along these rays both equation (28) and (29) can be 
shov, n to be the following ordinary differential equa- 
tions respectively: 

dS S , ;  S , ;  S x~ 
d: 8 F ~ - +  16 (31.) 

~ .1 s 2  s d  s2  
dt [" 2 8 8 16 ]A (32) 

In order to solve equations (30a) to (300, initial condi- 
tions need to be specified. The initial values for S,, S,, 
and S~, will be taken to be 4q, 4r and 8p respectively. 
These ray parameters identify the rays through which 
information is transmitted. The solutions to equations 
(30a) to {300 are: 

x,:--Xco--~-{y,o+y2o)t=pt ( 1 - - ~ r  t ) 

r t2 
(q+r)  (33a) 

(yx- Yz) - (ylo- y,o)exp (-~-) =2 (q- r) sinh ( t 

(33b) 
(Y~+Y2) - (Yx0+Y2o)= ( q + r ) t -  r p t '  (33c) 

S , , -  S, ,  = 4 (q-  r ) - 8 r p t  (33d) 

S x~ = 8p (33 e ) 

where x~o, Yl0 and Y2o are the initial values of Xo Yl and 
Y2 respectively. Using these results, equation (28) can be 
integrated to yield: 

S = (q-  r) ~ [e e_ 1] +4p 2t + (q+ r) zt - 2 r p (q+ r) t 2 

+ 4 ~p~t a ~- r  (34) 

For tlne specific initial condition (13) we can eliminate 
the ray parameters to obtain: 

4[Xc-- r l ~ Z ~ - J  [y,_ yz~Z 

S t [ l + l r ' t  ' ] t(Yx@Y')'@ 

Following the procedure of smith [6], in order to 
evaluate the amplitude factor A, it is useful to define the 
following Jacobian which is related to the separation be- 
tween rays. 

(Xc, y,, Y2) 
J 0(13, q, r) (36) 

This function obeys the tollowing equation. 

dJ j~ 1 Sy, y, Sy2y 2 SXcXc 
dtt = L - ~ +  ~ +  ~ + ~ ]  (37) 

Combining (37) and (29) it is clear that 

t 
A JV-Y~xp ( -  -~- ) =cons tant  along rays (38) 

This constant can be determined either from the solu- 
tion for sufficiently small time (Smith, p112), or from the 
conservation of total probability. The final result is: 

1 
A -- (39) 

16 (e ;r) '" st (I - e') o., (1+? 2 r't') o.s 

These results for ~obtained from equations (27), (35) 
and (39) can be shown to be identical to the exact solu- 
tion obtained for the single Brownian model by Foister 
[4] if our result is integrated over all values of y 

= Y2-Yl. Using the ray method one can therefore obtain 
the exact solutkm for the dispersion of the center of 
mass of tbe dumbbells in the absence of boundaries. 
Furthermore, one can show that both the single Brown- 
Jan model and the elastic dumbbell model predict iden- 
tical dispersion characteristics. This similarity between 
the two models wiII disappear, however, once bound- 
aries are included due to the fact that the linear dumb- 
bell cannot sample the entire region between the 
boundaries with equal probability. The solution obtain- 
ed so far is referred to as the incident solution and the ef- 
fect of boundaries can be taken into account by con- 
sidering the reflection of the rays at the boundaries. As 
time passes the reflected rays increase in importance 
relative to the incident rays and in general, multiply re- 
flected rays must be considered at longer times. In this 
calculation, however, we have only considered the ef- 
fect of the first reflected rays at either the bottom or top 
boundaries. Witb reflected rays taken into account, the 
following form for ~ is assumed. 

~ = A ~ e x p ( -  l~L-() +AHexp( - SR ) 16 ~ (4 0 ) 

where the subscripts ] and R refer to incident and reflec- 
ted rays respectively. The following conditions are used 
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at a point of reflection: 

S , - S R  (41) 

A,  S ,,, ,S ~ ,  
A. ( ( Y , - - y t ) q - - ~ - ] / [  ( y , - - y t ) - [ - - - ~ ]  (42) 

Using the boundary conditions and the results given for 
S/and A / in equation (35) and (39),Se and A~e can be ob- 
tained. The integrals<x(>>andgy, >>in equations (22)-(24) 
can then evaluated approximately as: 

<Yc>> ~e-~ (t){exp[ 1 ] _ e•  4+~ - 
rite, (t) 4+ e, (t) )/ 

1 
t exp[ 4 e e 2 ( t ) ]  ~__~h( t )  ) 

q . . . . . .  ~err o. 5 
2 ~ )  ~-~-(~) 4+% (t) 

+ e r f  [4te;  ( t ) ; ~  (t) (43) 

rt 
~;xc>> = 2  <<Yc>> (44) 

assuming that A//AR = 1 for small time ~ t < ' ~  and el(t) 
= 1- exp(-t) and e2(t)= 1 + t-exp{-t).  

Inserting these functions of time into equations (22)- 
(24} these equations can be numerically integrated to ob- 
tain the moments Vr < x , y c > a n d < y c > .  The disper- 
sion coefficients Kxr and K c can then be calculated 
directly from these second moments since the first 
moments, < x~> and <Y~>, are always zer,o in a simple 
shear flow. The result of this analysis for K,  is shown in 
Figure 3 where the time dependent dispersion coeffi- 
cient is plotted for several values of e. 

A P P R O A C H  TO STEADY STATE (rAYLOR) 
DISPERSION OF THE ELASTIC DUMBBELL 

S imple  s h e a r  f l o w  
The approach to steady state dispersion can be solv- 

ed by' considering equations (10)-(17) where U is yr First 
of all. we know that the moment P"(y], Y2 ; boo) is only a 
function of y of the form: 

yZ 
pO(y. y2;t_._~oo)__.Co exp r._ 1~_r (45) 

C, 
where Co ~ -  (46a) 

8V-~-~ 

1 1 2~g-~ (_ 1 ) _ I] (46b) 

This result can be easily obtained front equation (15a) 
for [~}. This function is direct y related to the center of 
mass distribution function C(y,: : t) which will be defined 
later. Using this result in tl~e same equation for P~(y~, y~ ; 
boo) we have: 

.4 

. 0 . 0  , , , .  , --, �9 12 .24 .3  
t / r e  

Fig. 3. Init ial  Xc dispersion of Elast ic  Dumbb-  

ell for s imple  shear f low for various 

va lues  of e (The only coupling effect  of 

radial diffusion and ax ia l  convection is 

shown and it is based on equat ions ( 22 )  

�9 (24) , (43)  and (44). 

a P '  a v2 D 2 
a t 4 ~ y  {exp ( -  1-~-~ ~y-y] [P '  Y - - -  exP(1-~-)  ] t  

a2p t yI 
ayc  ~ ~ycCo exp ( -  i-~) (47a) 

2 1 

y '  a iP,exp ( ~ )  ] + ~P' =0 (47b) 2 e x p ( -  1--~e ) ~ y  oYc 

at y=_+ (2 -2yc)  

This function is also directly related to the centroid 
Q(yc; t) which will be defined later. 

The center of mass distribution C(yj t) is defined as 

f 
2 2 y  c 

C (yc;t) = dy p0 (y,, y2;t)  (48a) 
J 2 Y c  2 

Using equation (45),the st.eady concentration distri- 
bution can be obtained, and it is clear that it does not de- 
pend on the specific velocity profile. This is plotted in 
Figure 5. 

The centroid Q of the concentration distribution is 
defined as 

f 
2 2Y c 

Q (yc;t) = dy P~(y~, y~;t) (48b) 
2 Y  c - 2 

Using equation (47), Q carl be shown to obey lhe follow- 
ing equation: 

DtaQ-4 t e x p ( - ~ )  Oy" ' e x P ( l ~ - ) ] t  . . . . .  -2 

D~Q 1 J e r f ( 1 - V c )  
ay~ 2 'flC'ycI" 2V-~  1 (49) 

a Q = 0  at y c = - + l  (50a) 
Oyc 
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j ~ Q dyc=0 (50b) 

[:roni equation (45), P~ will be indepeudent of y~ at 
long time and from equation (9), it is alsr clear that at 
long time, the x, dependence of ~(x~, y, y,;t) will 
become increasingly smaller and can be neglected. 
From these two facts and the relationship between W 
and ~ given in equation (14), 31~>/Oy~. and8 g/,:3y, ap- 
proach to zero at long time. It can then be concluded 
that OP~/Oy, approaches zero along with these two 
derivatives by the similar argument. Tile second term in 
equation (49) will then disappear from the bounda~  
conditions given in equation (47b), and that equathm is 
easily solved giving: 

Z a Z ~ 
1-- F] erf  ',z) 

Q(yc; t  "-~~176 C ~ l [ ~ a  ~ z 
,8 2 2a ~ 4a ~ ,Ia 

r 1 F z ,]exp ( -  z ')  + _ i z -  a) 
~-u-"6a  ~ 2a ~ 3 ~ - z a  ~ 

1 + 1~ f [ ~ 1 . e x p ( - - a ' )  
-F L~-a~ . -~-jer (a) + ~-a~ ~ J  V-~-- } (51) 

1 where z = a ( l - y c )  and a=  
2W7" 

The dispersion coefficient can be found directly fronl 
tile centroid function to be 

K , c -  D 2C, .  5 15 ]erf  (a) 
,saD [ ~ - J I [ l + s a '  i6a '  

" V ~ -  8a '  

5 5 +l ] t2a '  (52) 
2a 4a ~ 

As ~ --.., 0 (ur as the channel width becomes large 
compared with the dumbbell), this ratio approaches a 
value of 2/15 which is identical to the result for a single 
Browniau particle as one would expect. On the other 
ha~.d, as e approaches infinity, the ratio in (52) tends to 
a velue uf ]3/24, slightly greater than half of the 
previuus value. 
R e c t i l i n e a r  P o i s e u i l l e  F l o w  

First <)f all, let us calculate the average velocity of the 
dispersing cloud of elastic dumbbells. This is calculated 
by simply averaging the Poiseuille velocity field agaiust 
the functi/~n P~(y~, Y2: t ~co ) in equation (45). If we de- 
fip.e X as the ratiu vf the average velocity fi)r the elastic 
dumbbell mudel tr that for a Browniau particle, we bare 
that: 

" ~ = [ 1 -  ] e r f ( a ) +  ~ . [ a - - ~ ] 4  
C, V zra ~ 

(53) 

where CI is given in (46). 
One interesting result is that .a approaches unity as 

= 0 and e= 0% so that it passes through a max imum 
at a certain value of e. Now let us replace the longitudi- 
Jla] coordinate, x, with tile variable e - x -2M/3  because 
the cei~ter of the cloud wi l l  be moving with the average 
speed of 2X/3. 'File equation fl,r k's moments r x,, pk 
becomes 

_ _ _  ,,,~ O ( : ~ )  
a t  4 [P~exp ] 

a2P ~ 2A _ y ~ _  'y~ 
k'8 [ 1 - ~ -  , t  ]p , - l_Fk(k_  1)p,~ z ay~ 

(55a) 
with the same boundary condition as before. 
And 

dP ~ = k,8 {1 - 2,a. _ y~ _ ---.~ p,, dt ~ __]P~ ' + k ( k -  1) 

(55b) 

and again, the bounda~' condition is unchanged. From 
the equation for P~ we then obtain the dimensionless 
centroid function exactly as: 

4Q(z) [ 4 h ~ _ 1 ]  7--/z~ -~a~)e r f ( z )  
' 8 c ,  3 a '  [(~.~ 

z e x p  ( -  z 2) 2 l- f z ~  2z~ z 
2a2~/--~ - a2~"z-z ' "6a 3a 3 ~ a s 

+8-~7]erf(z) 5z + z 3 2z2 z ~ 
3a*~7-~ [~a~ 3a ~ 12a' F ] 

e x p ( -  z 2) ] +Ca 
" V 7  

where 

Ca= (2 1 5 ]erf (a )+  exp(-a2)  
"15 2a 2 4a  4 " ~r~-  

~2 
~G 

17 9 _b 1. [ 5 9 (4X 
30a ~ 1Taxi ~ 6a ~ 10a~]4 ,3- -  

+ ~ ]  1 . t  1 . 1 1 
{~7~[~aa4-~Ya3; - [F-+ ,~a2 ]erf  (a) 

(56) 

a 2 ) 
e x p  1 1 

[ ~  4- ~- ] ~ (57) 

in order to calculate tile dispersion coefficient for an 
inhomogeneous flow field as in tile present case, it is 
necessaw to evaluate the functiun P~(yl, Y:~; t ~ co) in 
detail instead of simply using the centroid Q(z) which 
,,,,'as possible for simple shear flow. This is a formidable 
task, however, and we shall resort here to a perturbatiun 
solution in the parameter ,E. In the limit of small e, any 
variation of the velocity gradient over the length scale uf 
the dumbbell can be neglected. Therefore it is only 
necessary to consider the average velocity ,,d the center 
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~ff mass r the dumbbell aud llot Ihe velocities of tim i::- 
dividual beads. If this approximation is macie, the rela- 
live average vehJciiy ,t and the centroid are; 

X ~ l - ~ ] e r f , ' a ) - - ~  [ 1 - ~ l  l e x p ( - a ' )  
C, ' ' a 2aa V 7  

1 
. . . .  (58) 

2aG"~ 

Qiz 
# 

where 

~-2A] -z ~ 1. zexp ( - - a  =) z 
!LT§ ]erf (~) + " 3 - e VV V~ 1 

"12a' 3a 2a ] e r f ( z )  3a'~/G- 

z a z '  Z ~ exp ( -  z*) 
"12a 2 3a 24-g k ] \/~_ ~-C= 

(591 

1 - 1 _ _ ~ a  2 a 17 1 ]exp(-a a) 
c~:=~;G~ig ~ ]+[]5  60a 5a = 

a 2 1 . a  + 1 e x p ( - a  2) 
22 { ( ? +  ] e r f ( a )  q - [ ~  6aa 
3 

1 1 a a '  1 3 ] e r f  (a) (60) 
v7  I G + ~ q +  Ii-5 4 8a' 

Then the dispersion coefficient is 

Kxc . 2 A . . , 1 3  1 
- 1 ] /`8 '  = C,/C~-.J ,. "45 - --l16a, ' e r f  (a) 

13 7 1 exp ( -  a 2) __ ( 1 1 
+ 1 4 5 a  360a 3 30a s) ~ ' 9~ - : -3a  

1 @ ~  [ 5 8  1 1 5 ~erf (a) 
32a ~) ] +  315 6a ~ - 8 a '  32a 6 

2 1 .  1 4- 58 337 
+ I t @ ,  ~ 5a ~ ~ J ~ - ~  I-3Esa+z520a , 

89 1 exp {-  a" ) 
] t (61) 

560a ~ 14g  ~ -  

However, this dispersion coefficient is only valid up 
to 0(]7) since this is the relative size of the dumbbell to 
the channel  gap. Upon fetal[ring terms of that order it/ 

the above equations we have: 

.Kxc 1]/`8, = 8 e l _  17~]~. 

As in the case of a linear shear flow, the above result 
fur Poiseuil[e flow tends to the single Browuian partkle 
result (in Hds case 8/945) when �9 tei:ds to zero. 

D I S C U S S I O N  A N D  C O N C L U S I O N S  

The results oblained above are sui ,marized in 

T a b l e  1. B o u n d a r y  e f f e c t s  on d i s p e r s i o n  c o e f f i -  

c i e n t s  f or  s i m p l e  s h e a r  f l o w .  

Solute Infinite domain Between two pla:es 

[ 5 - ~ i / # = '  c~-:~in': zo-;-, t~:5 
E.D. ~ -ff ~o  

< K~c 1 ] /~2=t2  K,c 2 2 . 3~I~ - 
- -  - 1}15 ~ - , 1 + - - -  + ---} 

' D [ V -  15 ,~ 

for small �9 

*---~ means the approaching quantities as time goes 
to infinity, 
**S. B. and E.D.  denote the single Brown/an and 
the elastic dumbbell models respectively. 
***X~ and /x~ are  defined in Appendix A. 

Tables 1 and 2. The predictions found for the elastic 
dumbbeN model are compared against the correspond- 
ing results for a single Brownian particle. As indicated in 
Table 1, both particles have the same dispersion charac- 
teristics in unbounded flow but differ when placed bet- 
ween the confines of parallel, solid boundaries. In that 
case the parameter �9 the ratio of the time scale for 
diffusion across the gap to the relaxation time of the 

T a b l e  2. Flow e f f e c t s  on  s t e a d y  t a y l o r  d i s p e r -  

s i o n  v a l u e  o f  . ' K ~ / D - 1 ] / ` 8  z. 

Solute Simple shear  Rectilinear Poiseuille flow 
flow poiseuille in a tube 

flow 

2 8 8 9 
S. B.* 

15 945 3072 

[ 1 ] [0. 0635] ..0.0220] 

E.D. 2 2~7-, 8 [i 17V-7-]** 
(small �9 ', ]~  [1 ~ J 945 ~"-z- 

* S. B. and E. D. mean the single Brownian and el- 
ast ic dumbbell models respectively. 
** To take into account the decrease  in average 
velocity gradient exer ted  to molecule due to the 
concentrat ion distribution by using ,8" =k~`8 
where 

k . = [ l +  1 jeff(a>+ 1 [e ~'-2] 
2a 2 ' ' •' 7ra 

then it becomes 

8 ~. 9V e . 
- - - L I -  - ~ - -  
945 2~/ z "  

S e p t e m b e r ,  1 9 8 6  
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S t e a d y  x c dispersion of Elast ic  Dumbb- 

ell normalized by that  of Spher ica l  B r -  

ownian model a s  a function of ~ (Upper  

one is for s imple  shear f low based on 

equation(52) and lower one is for Poise-  

uille f low based on (61)). 

dumbbell, becomes importanl. As previously mention- 
ed. tt is parameter is also proportional to the square of 
the dumbeli 's radius of gyrat o i to the channel gap. 

F~,r the time-dependent development of dispersion 
chara=teristics, there are throe different regions, of 
which the first two are sho~,~n in Figure 3. Fc,r very short 
t imes the dispersion coefficient ',,,.,ill respond as it would 
for an iufinite domain and Ihe elastic dumbbell  will 
disperse in a fashion similar to a single Brownian parli- 
cle. VeD' quickly, however, the effects of f in te  values of 
tile parameter ~ become imp(,rtant. 

In the final stage, where sleady Taylor dispersior., is 
approached, an exact solutiol~ ft,r the elaslh dunlbbell  
model in a simple shear flow ,,','as obtained and the 
results are given in Figure 1. Here the dispersion coeffi- 
cient is plotted against the parameter e and t~e intercept 
at ~ = 0 represents file case of a single Brownian part- 
c]e. As e increases, the dispersiCm coefficieu eventually 

I 

"-'-- ~ =0.25 
�9 8 ~ ~ ~ ' ~  ...~_~ 

.~ . .  6 ~ - - .  
~ 0.01 "--- - " -  -'"-.. 

X �9 2 

0 , , 
0 .2 .4 .6 .8 1 

Y~/ l  

S t e a d y  center of mass  distr ibution of 

Elast ic  Dumbbell model as  a function of 

y~ for various of ~ .  

f 

~ .6 �84 

~.4 

.2 

i § 

0 ,2 .'4 .6  .8  
Yc,/I 

Fig. 6. The Xc dispersion of Spherical  Brownian 

model as  a function of d imens ionless  t i -  

me scaled by' re(Upper is for Po i seu i l l e  

flow based on(B9) and lower is for s i m -  

ple shear  flow based on(A23)) .  

decreases to appn.)ximalely one half of the value for the 
single Brownian particle. This decrease is simply a 
reflecti~n of tile fact that increasiug tile size of the dumb- 
bell relative to the channel gap causes tile particle to 
sample a restricted range of the velocity field across tile 
gap. Tile coupling between convection and Bmwnian 
diffusion is thereby decreased. This point can be made 
clear by consideration of Ihe concentration profile of Fig. 
3-5. which iudicates that tile dumbbel l  is unable to ap- 
proach to the solid walls and sample tile veh}city field in 
that region. An. t i le r  in/portant fil~ding is that the 
decrease in the dispersion coefficient with increasing 
occurs rather quickly and has approached its final value 
to within a few percent after ~ is raised to 0.1. 

Dispersion depends on m~t untv tile vertical distribu- 
tion of solute, bul also on the vertical velocity distribu- 
tiun. The transiert behavior of a sii!gle Brownian parti- 
cle is showu in Figure 6, aild it takes a much louger t ime 
in case of s imple shear  flvw than in Poiseuille flow to 
achieve  steady Taylor dispersiou. The  reason is tkat in 
Puiseuille flow there  is a region r larger velocity gra- 
dients  near the walls where the concentration is c,m> 
parably ]ovv. This allows tile approach tu steady Taylor 
dispersi~,n to occur sooner and Io alstJ ]~ave a sr 
h,,wer dispersion ~ oefficient than f,~r simple shear fh~w. 
The other factor governing tile level of quasi-steady dis- 
persion is the gecmletD, of the boundaD'. As sb, own in 
the first row in Table 2, tile effects of flow and geomelry 
are tremendous when one considers the differences be- 
tween flow between parallel plates and down circular 
tubes. Simple st/ear flow is by far the most effective dis- 
persing flow when conlpared wilJl Poiseuil]e fh,w. On 
the other hand, tile difference in the dependence on tile 
parameter r between simple shear and Poiseuiile fi(,w is 
only slight when one o~nsiders the elastic dumbbell  
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NOMENCLATURE 

A(As, AA,) 

b 
D 
H 
J 
kT 
K(K,,. K,,) 

1 
11 

t 
pk 
pk 

q 
i~, r=,, _~<, r 
S(S/, S~,) 

U 

Ul, _.U2 

xi,  x2, xr 

Yl, Y2, Y< 
Zl, Z2, Z< 

X~!!. Yl., Y211 

pre-exponential factor of ray expansion, / 
and R refer to incident and reflected rays 
radius of tube 
translational diffusivity 
Spring constant of dumbbells 
Jacobian defined in (36) 
Boltzman energy 
Dispersion coefficient, xc and ~c refer to 
x< and y, directions. 
Characteristic length 
Outer normal unit vector 
Time 
Kth nioment of x< defined in (14) 
Averaged kth nloment of x, defined in 
i16) 
Diniensionless centnfid fu:Lction 
position vector 
Exponential factor in ray expansion, 1 
and R refer to incident and reflected ray 
Mean velocity 
velocity vector 
x compoi~ents of position vect,~rs 
y components  of position vectors 
z components  of position vect~ ,rs 

Initial value of x,, y~, Y2 

Greek: Le t t er s  
ff 

6 
E 

k 

TC 

"re 

e, 
<<B>> 
<<C>> 

Characteristic velocity gradient 
Kronecker delta 
Ratio of characteristic times 
Friction coefficient 
cons tau[  

Eigenvahies 
Characteristic tinie 12/D 
Characteristic time for dumbbells 
Integrated distribution function defiued in (9) 
Distribution function defined in ( ) 
Averaged qunatities defined in (25) 
Averaged quantites defined in (26) 

A p p e n d i x  A. S p h e r i c a l  B r o w n i a n  in S i m p l e  
S h e a r  F l o w  

Diuiensiouless governing equation and its auxilliary 

o)nditions are: 

a ~  ac f  a ~b  ~  ( A I )  -a~+~Y~ ax~ axe' ay~ 

O(x~:,yc)=~(xc)a(y<.) at i = 0  (A2) 

a@ 
OYc 0 at Y c :  +--1 (A3) 

If we define 

Pa{yc ; t )  = f[ax~xc~r (x<,yc;,) ( 1 4 )  

then 

3 p  ~ cOAp ~ 
a t  ay,~ f lkycP a ~ + k ( k -  1)P '~-2 (A5) 

P a ( y c i t ) = ~ 0 b ' ( y c )  at t = 0  (A6) 

- -  = 0 at Yc= --+I (AT) 
aye  

dp  ~ 

P a ( t ) = 6 ~ . 0  at t 0 (A9) 

where 

/, 
P ~ ( t ) =  dycP~ (yc ;t)  (A10) 

I 

If we try the separation of variables in pk(y, ; t) or put 
pk(y~ ; t)= Y(y<.)T(t), then we obtain two series of eigen- 
values and corresponding eigenvecters fur Y(y,). One is 
A,,= n 1Tand Y.(y,.)=coNA,~y,) and the Gher  is ,u. ,= 
( m r  112)~ and Y,.(y~.) = sin(/~,,,y, ). The first one is even 
with respect to y<, and the latter is odd. We km~w that 
p0(y,; t) is even with respect to y,, st> we have 

1 
p0 ( y c ; t ) =  ~ +n~.L cos (Any;.) exp(--XnAt ) 

In case of pl(y<.; t), we have 

a p  I OAp ' 
f lycP ~ (yc;t) at  ~y,.' 

(Al l )  

(AI2) 

P '  lye;0) = 0  (A13) 

O P '  
. . . .  0 at y c = + _ l  (A14) 
a Yc 

It is obvious there is no homogeneous s{)luti,,u except 
zero, to satisfy the initial and boundary condithms so that 
we can have an unique solution f~r P~(y, : t). l.et us use 
the niethod of eigenfunctiun expansions by putting: 

P' (yc ; i) = ~ sin (/~my,) "1~ (t) (AI51 
m = o  
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ycP ~ (y~;t) = ~ sin (/~,~yc)C,. (t) (A16) 

Then C,,(t) can be oblained from the orthogonality of 
eigenfunctions. 

c . ( t )  = ( -  L ' 2 +  ~ ~ ~ k ' , ( -  1',, "'~ 

1 1 
[ , . , ] {A17', 

Then equation for T.,(t) is 

d']7,. -r- vdW,~ {t) =r C,. (t) (A18) 
dt 

T,~(t)=0 a~ t = 0  (A19) 

Then we have 

T,~(,)=,8 ( -1)~ '  ~,2." ' 1) '+ '  

1 1 
[ . . , + x ~ ) ~  ~ ]:.e . . . . . .  e " ~ " ]  

So we have 

P'  (yc;t) = s 
m = o  

<~,20) 

sin (/~,~Yc) T,n t ) (A21 ) 

( -  I) ~ K~ = I + Z  __.__expr_Xfft) (A22) 
D 3 ~,d ' 

( -  1) ~ 
K.~ 1425 '  Z =_~z_ T,~(t) (A23) 

A p p e n d i x  B. Spher i ca l  B r o w n i a n  in Po i seu i l l e  
F low 

In :his case P (y, ; t) is exactly same as befl)re, but for 
P~(y, ; t) we have 

3 P '  3~P ~ 
Ot Oy(~ /9 (1-y(2)P ~ (yc;t) (B 1) 

with same omditi(~ns as before. Lel us ~ '  

P ~ ( y ( ; l } = f l ~ S o ( ' t ) -  ~ COS(~.nyc'tSnll)l (B2) 

( l - y { Y ) P ~  .Z t cos( ; tw, )Dc( t )  

(B3) 

Then we get 

1 ( - 1 )  '~ 
Do " , 1 = ~ - 2 2 ~ -  e x p ; - ; . d t )  (84) 

2 ( - 1 ', " 2 1 
Dn t/ 4- [ ] exp ' , -  l.n2t) 

�9 ) , ~  3 :~ ~,,; 

+ 2 X  ( -  1)~+" [ ~  + x l ~ ]  exp ( -  Adt ) 

(B5) 

Then we have 
t ( -  1)" 

So (t) = ~- d- 2 .:1 "~ ~ [exp ( -  A~t) - ]] (S 6] 

2 ( -  1)", 
S ~ ( t ) = [  3 2 ~  J ~ e x p ( - Z ~ t )  

+~ - 7 7 -  ~1-  ~ •  ,<,h).q 

~e-ak2t-  e ~120t (B 7) 

In order to get K,/D, we should know P i and dP-I/dt. 

K,~ 1 dE ~ ~q dP'  
D 2 dt dt (B 8) 

After tedious calculation, we finally obtain 

(B9) 

REFERENCES 

I. Taylor, G.I.: Pro. Roy. Soc, 219, 186 (1953). 
2. Aris, R.: Pro. Roy. Soc, 235, 67 (1956). 
3. Brenner, H.: Chem. Eng. Sci. 16, 240 (1961). 
4. Foister. R.T. and Vail De Ven, T.GM.: J. Fluid 

Mech., 96, 1(15 (1980). 
5. Lighthili, M.J.:.I. h~st. Math Applic, 2, 97 (1966). 
6. Smith, R.: J FhudMech., 111, 107 (1981). 
7. Co)hen, J.K. and Lewis, RM.: .1. h~sl. Moth. Applk:.. 

3, 266 (1967). 
8. Cohen, J.K., Hagin, F.G. and KeJIeL J.B.: .Z /14(~flL 

Anal. Appfic., 38, 83 (1972). 
9. Dill, LH. and Brenner, H.:.L Coll. h~t. 5'eL. 03, 343 

(1983). 
10. Dill, LH. and Brenner, H. : /  Odt #ft. Sci, 94,430 

0983).  
11. Dill, L.H. and Brenner, H.: Physicochem. tt;dro- 

dyn., 4, 279 (1983). 
12. Bird, R.B., Hassager, O., Armsmmg, R.C. and Cur- 

fiss. C.F.: "Dylmmics of P,~tymeric Liquids Vol 2 
'Kinetic The()ry'", Wiley. N.Y. (1!)77). 

13 Aubert, J.H. and Tirrell, M.: .I. Chem. Phys, 77, 
553 (1982). 

Korean J. Ch. E. { Vol. 3, No. 2) 


